M Freass Al e Syyssteam faor UJNNIXX*

Marshal Kirk McKusick William N. Jby]-,
Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkelegy, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is
described. Theeimplementation provides substan-
tially higher throughput rates by using more flex-
ible allocation policies that alobetter local-
ity of reference and can laelapted to a wide
range of peripheral and processor characteristics.
The nav file system clusters data that is sequen-
tially accessed and providesawdock sizes to
allow fast access to large files while not wasting
large amounts okpace for small files.File
access rates of up ten times faster than the
traditional UNIX file system arexperienced.
Long neededenhancements to the programmers’
interface are discussed. These includerecha-
nism toplace advisory locks on files, extensions
of the name space across file systems, the ability
to uselong file names, and provisions for admin-
istrative cntrol of resource usage.

Revised February 18, 1984

----------- * UNIX is a trademark of Bell Laboratorie. William N. Joy is aurrently employed by: Sun Microsys-
tems, Inc, 2550Garcia Arenue, MountainvView, CA 940434 Samuel J. Leffler is currentlgmplo/ed by: Lu-
casfilm Ltd., PO Box 2009, San Raf, CA 94912 This work was done under grants from the National Science
Foundation under grar1CS80-05144, and the Defense Advance Research ProjectsyA@wio) under ARR
Order No. 4031 monitored by Mal Elec- tronic System Command under Contract N$00039-82-C-0235.

SMM:05-2 AFast File System for UNIX

CR Catgories and Subject Descriptors: D.4@jperatimpSys-temmgs] File Systemdvanagement fil e
oragaanization direc- torv structures acce<s methods D42 IIODmeraatimon

stora®@ devices D.4.8 [MOperatingg Systemmis] Per formance - measurements,

operationla analysis H.3.2 [Imfor- mmation Systenms] Information Storage - file

Additional Keywords and Phrases: UNIX, file systengariza- tion, file system performance, file system design,
applica- tion program interface.

General Terms: file system, measurement, performance.

A Fast File System for UNIX SMM:05-3

TTAABBLL EE CORF- GCOONNTTEENNTTSS

11 Imtroocdduicticoom

2. Addl filee systeenmm

3B. NNeewwfil ¢ gyssteem argeamizaatian 31. Optimizingstorage utilization 3.2. File system parameteriza-
tion 3.3. Layout policies

4. FRerformmamaces

%. Hil e gyysteem fumctiomdseemhamacenmesbl. Longfile names 5.2. File locking 5.3. Symbolic
links 5.4. Rename 5.5. Quotas

AMckmovwlediggeemmeamts
Referemces
1. Imtrooddwatioom

This paper describes the changes from the origid&l byte UNIX file system to the meone released with the
4.2 Berleley Software Distrilution. It presents the maftitions for the changeshe methods used tofeft these
changes, the rationale behind the design decisions, and a description of ihgplenentation. Thigliscussion is
followed by a summary of the results thavdvieen obtained, directiorfer future work, and thedditions and
changes that wa been made to the facilities that ak@iable to programmers.

The original UNIX system that runs on tiRDP-11| has simpleand elgant file system facilities. Filsystem
input/output is bffered by the kernel; there are miign- ment constraints on datmansfers and all operations are
made to appear synchronou&ll transfers to thedisk are in 512 bytdlocks, which can be placed arbitrarily
within the data area of the file systemirtually no constraints othethan aailable diskspace are placed on file
growth [Ritchie74], [Thompson78].*

----------- {1 DEC, PDPR VAX, MASSBUS, and UNIBJS are trade- marks of Digital Equipment Corporatidhn
practice, a files 9ze is constrained to be less than about one gigabyte.

SMM:05-4 AFast File System for UNIX

When used on the AX-11 together with othetNIX enhancements, the original 51®te UNIX file sys-
tem is incapable of pwading the data throughput rates that mapplications require For example, applications
such as VLSI design arithage processing do a small amount of pro- cessing on a large quantities of data and
need to hee ahigh throughput from the file systeriligh throughput rates are also needed by programs that map
files from the file system into large virtuadldress space®aging data in and out of the file systemlilsely to
occur frequentlyfFerrin82b]. Thisrequires a file system prigling higher bandwidth than the original 512 byte
UNIX one that provides only about tw percent of themaximum disk bandwidth or about 20 kilobytes per sec-
ond per arm [White80], [Smith81b].

Modifications hae been made to the UNIX file system to impeats performance. Since the UNIX file system
inter- face is well understood and not inherentlywslthis devel- opment retainedthe abstraction and simply
changed the underlying implementatitmincrease its throughput. Con- sequeniiers of the system ¥ rot
been faced with mas-v& ftware comersion.

Problems with filesystem performance ¥xa been dealt with)@ensiely in the literature;see [Smith81a] for a
suney. Previous work to impree the UNIX file system performance has been done by [Ferrin82Z8he UNIX
operating systendrev mary of its ideas from Multics, a large, high performarmgerating system [Feiertag71].
Other work includesHydra [Almes78], Spice [Thompson8@ind a file system for a LISP environment [Symbol-
ics81]. A good intro- duction to thghysical latencies of disks is described in [Pechura83].

2. AJd FAl e Syysteenmm

In the file system deloped at Bell Laboratories (th#raditional” file system), each diskive is dvided into
one or more partitions. Each of these diskrtitions may contain one file syster.file system neer spans mul-
tiple partitions:| A file system is described by its supkliock, which contains the basic parameters of thedjle-
tem. Theseinclude thenumber of data blocks in the file ---------- By “partition” here we refer tothe subdti-
sion of physical spacen a disk die. In the traditional file system, as in theandile sys-tem, file systems are
really located in logical disk partitions that mayedap. This overlap- ping is made\ailable, for example, to al-
low pro- grams to copentire disk drves containing multi- ple file systems.

A Fast File System for UNIX SMM:05-5

system, a count ofhe maximum number of files, and a pointer to theee |ist, alinked list of all the free
blocks in the file system.

Within the file system are filesCertain files are distinguished as directodaesl contain pointers to files that
may themselves be directorie€very file has a descriptor associated with it calledi n o de. Aninode
contains information describing ownership of the fiiepe stampsmarking last modificatioand access times for
the file, and an array of indices that point to the data blockshirfile. For the purposes of this section, we as-
sume that the first 8 blocks of the file are directly referenced by values stored in an inode Aselifiode may
also containreferences to indirect block®ntaining further data block indicefn a file system with a 512 byte
block size,a dngly indirect blockcontains 128 further block addresses, a doubly indirect block contains 128 ad-
dresses of furthesingly indirect blocks, and a triply indirect block contains 128 addresses of further doubly indirect
blocks.

A 150 meabyte traditional UNIX file system consists ofrdegabytes of inodes follwed by 146 mgabytes of
data. Thisorganization sgregaes the inode information from the data; thus accessing a file normally incurs a long
seek from the files inode to its dataFiles in a single directory are not typically allocated conseutdots in
the 4 mgabytes of inodes, causing manon-consecutie Hocks of inodes to be accessed whewcating oper
ations on the inodes of\s®al files in a directory.

The allocation of data blocks to files is also subopti- mum. The traditional file systemniraasfers more than
512 bytes per disk transaction and often finds that the next sequeaialblockis not on the sameylinder, forc-
ing seeks between 512 byte transféfae combination of themall block size, limited read-ahead in the system,
and mawy seeks seerely limits file system throughput.

The first work at Berlley on the UNIX file system attempted to impe both reliability and throughput.
The reliability was impreed by daging modifications to criti- cafile system information sthat the could ei-
ther be completed or repaired cleanly bpmagram after a cragiKowadski78]. Thefile system performanceas
improved by a factor of more than tavby changing the basic block size from 512 to 1024 bytes. ifidrease
was because of tw factors: each disk transfer accessed twice as much data, anfilesosiouldbe described with-
out need to access indi- rect blocks since the direct blocks contained twingchsdata. The file system with these

changes will henceforth be ----------- FThe actuahumber may ary from system to sys- tem, but is usually in the
range 5-13.
SMM:05-6 AFast File System for UNIX

referredto asthe alfilesvstem

This performance impr@ment ggvea drong indicationthat increasing the block size was a good method for
improv- ing throughput. Although the throughpbtid doubled, the old file systemas dill using only about four
percent of the disk bandwidtilhe main problem was that although the flest was initially ordered for opti-
mal access, it quickly became scrambled as files were createctnoded. Eventually the free list becarse-
tirely random, causing files to V& teir blocks allocated randomlyer the disk. This forceda ek before eery
block access. Although old file systems provided transfer rates of up to 175 kilobytes per secondymiierethe
first created, this rate deterio- rated to 30 kilobytes per second aftemaeéks of moderate use becaus# this
randomization of data block place- ment. There was no way of restoring the perforofaaceold file system
except todump, rebuild, and restore the filgystem. Another possibilityas siggested byMaruyama76],
would beto hare a pocess that periodically reganized the data on the disk to restore locality.

3B. NNeevwvfil 2 yssteem arggamizaatioom

In the nev file system aganization (as in the old file systemrganization), eacldisk drive mntains one or more
file systems.A file systemis described by its supeblock, located at théeginning of the file systera’dsk
partition. Becausthe super-block contains critical data, it is replicated to protethsigcatastrophic loss. This is
done when the file system is createsifice the supeiblock data does nathange, the copies need not be refer
enced unless a head crash or other [ths# error causethe default super-block to be unusable.

To insure that it is possible to create files as large as 2 ** 32 bytes with anlgugs of indirection, themini-
mum size of a file system block is 4096 byt&ke size of file system blocks can bg aower of two greater than
or equal to 4096.The block size o& file system is recorded in the file systemiperblock so it is possible for
file systems with different block sizes to be simultane- ously accessible on the same system. The block size must be
decided at the time that the file system is created; it can- not be subsequently changed wiilthog rigle file sys-
tem.

The nev file system aanization divides a disk parti- tion into one anore areas calledcylinder
groups A cylinder group is comprised of one porore consecuie cylinders on a disk. Associated with
each cylinder group is some bookkeeping information that includes a redundant copy

A Fast File System for UNIX SMM:05-7

of the super-block, space for inodes, amiap describingvailable blocks in thewdinder group, and summary in-
forma- tion describing the usage of data blocks within yieder group. The bit map of wailable blocks in the
cylinder group replaces the traditional file systefrée list. For each cylinder groum gatic number of inodes is
allocated at file system creation tim@he default polig is to dlocate one inode for each 2048 bytéspace
in the cylinder group, expecting this to be far more than we be reeded.

All the cylinder group bookkeeping information could be placed at thahieg of each cylinder groug-How-
eve if this approach were used, all the redundant information would be on thglatier A single hardware
failure thatdestrged the top platter could cause the loss of all redun- dant copies of thebkgher Thus the
cylinder groupbookkeeping informatiorbegins at a varying offset from the dianing of the cylinder groupThe
offset for each successie cyinder groupis calculated to be about one track further from the beginning of the
cylinder group than the preceding/linder group. In this way the redundant infanation spirals dan into the
pack so that gnsingle track,cylinder, or platter can be lost without losing all copies of the supeck. Except
for the first cylinder group, the space between ltbginning of the cylinder group and thegirening of the glin-
der group information is used for data blocks.}

3.1 QOptinmizimgy soraagge ulilizaatioom

Data is laid ouso that lager blocks can be trans- ferred in a single disk transaction, greatly increasing file sys-
tem throughput. As aexample, consider a file in thewdile system composed of 4096 byte data blocks.the
old file system this filevould be composed of 1024 byte -------—- While it appears that the first cylinder group
could be laid outwith its suner-block at theknown” |ocation thisvould not work for file svstems witlhlocks

sizes of 16 kilobytes agreater This is becausef a requirement that the first 8 kilobytes of the disk be rederv
for a bootstrap program and separate requirement that the cylinder gronformation begin on éle system
block boundary To gart the cylinder group on a file system block boundfity sys- tems with block sizes ¢pr

er than8 kilobytes would hge o leare an empty space between the end of the boot block and the beginning of the
cylin- der group. Without knaving the size ofthe file system blocks, the system would kiodw what roundup
function to use to find the baning ofthe first cylinder group.

SMM:05-8 AFast File System for UNIX

blocks. Byincreasing the block size, disk accesses in thefite system may transfer up to four times as much in-
for- mation per disk transaction. In large fileseveral 4096 byte blocksnay be allocated from the samgdider
so that gen larger data transfers are possible befaguiring aseek.

The main problemwvith larger blocks is that most UNIX file systems are composed of smaall files. A uni-
formly large blocksize wastes spacdable 1 shows the effect of file system block size on the amounasted
space in the filesystem. Thefiles measuretb obtain these figures reside on one of our time sharing systems that
has roughly 1.2 gigabytes of on-line storagéhe measurements are based on theecter file systems con-
taining about 92@negabytes of formatted space.

+ + + + |Space used| % waste | Qganization
| + + + +|775.2Mb | 0.0 |Data onlyno sparation be-
tween files || 807.8 Mb | 4.2 |Data only each file starts on 512 byte boundary | | 828.7 MI5.9 |Data

+ inodes, 512 byte block UNIX file systerh| 86.5 Mb | 11.8 |Data + inodes, 1024 byte block UNIX file sys-
tem || 948.5Mb | 22.4 |Data + inodes, 2048 byte block UNIX file systgrh1128.3 Mb | 45.6 |Data + inodes,
4096 byte block UNIX file system + + + + Table 1 -
Amount of wasted space as a function of block size.

The space wasted is calculated to be the percentage of space on the disk not containing ésethealdock size
on the disk increases, the waste rises quitilgn ntolera- ble 45.6% waste with 4096 byte file system blocks.

To be ale to use lage blocks without undue aste, small files must be stored in a more efficiexyt Whe
new file system accomplishes this goal by allowing tfieision of a dngle file system block into one or more
fragmentsThe file system fragment size is specified at the time thafilthesystem is created; each file
system block can optionally be broken into 2,04, 8 fragments, each of which is addressable. [diver bound
on the size of these fragments is constrained by the disk sector size, typicallyt®$2 Theblock map associ-
ated with each cylinder group records the spaesasle in a cylinder group at the fragmelatvel; to determine if
a Hock is available, aligned fragments argagnined. Figurel shows a piece of a mafirom a 4096/1024 file
system. Eachit in the map records the status of a fragment;)dn shows that the fragment is nse, while an
“ O” shows that the fragment isvalable for allocation. In this eample, fragments 0-5, 10, add are in use,
while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks cannot be used as a

A Fast File System for UNIX SMM:05-9

+ + + |Bitsinmap | XXXX XXOO OOXX OO0O0O | |Fragment humbers |
0-3 4-7 8-11 12-151 IBlock numbersl 0O 1 2 13 |+ + + Fiaure 1

- Example layout of blocks and fragments in a 4096/1024 file system.

full block, even if they are large enough. In this example, fragments 6-9 cannot be alloaated full block; only
fragments 12-15 can be coalesced into a full block.

On afile system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is repregerdeal
or more 4096 byte blocks dfata, and possibly a single fragmented bloifla file system block must be frag-
mented toobtain space foa gnall amount of data, the remaining fragments of the block are maitkbée for al-
location to other files. As an example considerl1000 byte file stored on a 4096/1024 bytedilstem. This
file would usestwo full size blocks and one three fragment portion of another block. If no block with three aligned
fragments isavailable at the time the file is created, a full size block is split yieldiveg necessary fragments and
a dngle unusedfragment. Thigemaining fragment can be allocated to another file as needed.

Space is allocated to a filwhen a program does @& rite gstem call. Each time data is written to a file, the
system checks to see if the size of the file has increaskedhie file needs to be expanded to hold the/data, one
of three conditions exists:

1) Thereis enough spacéeft in an already allocated
block or fragmento hold the ne data. Thenew data
is written into the eailable space.

2) Thefile contains no fragmented blockand the last

block in thefile contains insufficient space to hold

the nev data). If space exists in a block already

allocated, the spadefilled with nev data. Ifthe

remainder of the medata containamore than a full

block ofdata, a full block is allocated and the first

full block of new data is written thereThis process

is repeated until leghan a full block of ne& data

remains. lfthe remaining ne data to be written will

fit in less than a full block, a block with the neces-

sary fragments is located, otherwiséull block is

located. Theremaining ne data is written into the ----------- * A program may beeowriting data in themid-
dle of an existing file in whicltase space would alreadyhdeen allocated.

SMM:05-10 AFast File System for UNIX

located space.

3) Thefile contains one or more fragments (and the frag-
ments contain insufficient space to hold ther data).
If the size of the ne data plus the size athe data
already in the fragmentsxeeeds the size of a full
block, a nev block is allocated. The contents the
fragments areopied to the beginning of the block and
the remainder of the block iilled with nev data.
The process then continues as in (2vab®therwise,
if the nev data to be written will fit in lesshan a
full block, a block withthe necessary fragments is
located, otherwise a full block is locatedhe con-
tents of theexisting fragments appended with the new
data are written into the allocated space.

The problem with expanding a file one fragmeniattime is thatdata may be copied matimes as a frag-
mented block expands to a full blockragment reallocation can be minimized if the user program writes a full
block at a time, except for a partial block at the endhef file. Since file systems with dferent block sizes may
reside on the same svstem the file svstem aterhas beenxeended tmrovide aonbplicatiomroarams the ontimal

size for a read or writeFor files the optimal size is the block size thie file system on which the file is being ac-
cessed. 61 other objects, such as pipes and stg;khe optimal size is the underlyitgffer size. Thideature is
used by the Stan- dard Input/Output Libraryackage used by most uspro- grams. This featurds also used by
certain system utili- ties such as axens and loaders that do theiwn input and output management and need
the highest possible file system bandwidth.

The amount of asted space in thd096/1024 byte e file system aganization is empirically observed to be
about the same as in the 1024 byte old $stem aganization. A file systemwith 4096 byte blocks and 512 byte
fragments has about the same amount of wasted spabe &12 bytélock UNIX file system. The nefile sys-
tem uses less space than the 512 byte or 1024 fiigtesystems for indeng information for large files and the
same amount of space for small fil@hese savings are offset by theed to use more spafme keeping track of
awailable free blocks.The net result is about the same disilization when a n& file systems fragment size
equals amld file systens Hock size.

In order for the layout policieso be efective, afile system canndie kept completely full For each file sys-
tem there is a paramet¢ermed the free spaceesenre, that gives the minimum acceptable percentage of file sys-
tem blocks that should be free. If the numluérfree blocks drops belo this level only the system administra-
tor can

A Fast File System for UNIX SMM:05-11

continue to allocate blocks. Thalue of this parameter may be changed at timne, ezen when the file system

is mounted and ae®. The transfer rates that appearsec- tion 4 were measured on file systems kept less than
90% full (a resere of 10%). If the number of free blockfalls to zero, the file systemhroughput tends to be cut

in half, because of the inability dhe file system to localize blocks in a file. alfile systerms performance de-
grades because of@filling, it may be restored by remimg files until the amount of free space once again reaches
the mini- mum acceptablevd. Accessrates for files created during periods of little free space may be restored by
moving their data once enough spacevigilable. Thefree space resesvrust beadded to the percentage ohste

when comparing the ganizations gien in Table 1. Thus, the percentage whste in an old 1024 byte UNIX file
system is roughly compa- rable to awn#096/512 byte file system with the free space reseet at 5%.(Compare
11.8% wasted with the old file system to 6.9% waste + 5% reserved ispdice nev file system.)

3.2 Hil e yysteam graranmesteerizatiom

Except for theinitial creation of the free list, the old file system ignores gagameters of the underlying
hardware. It has no information about either the physical characteristics of the mass storage devicdaod-the
ware that interacts with itA goal of the nw file system is to parameterize the processapabilities and mass
storage characteristics so that blocks can be allocated in an opti- mum configuration-depanddrarameters
used include the speed of theocessaqrthe hardware support for mass storage transfers, and the characteristics of
the mass stelage devices. Diskechnology is constantly improving and &egi installation can hae ®veal differ-
ent disk technolo- giesunning on a singlprocessar Each file system is parameterized so that it can be adapted
to the characteris- tics of the disk on which it is placed.

For mass storage @&es such as disks, thewéle system tries to allocatewdlocks on the sameytinder as
the previous blockn the same file Optimally, these ne blocks will also be rotationally well positionedhe dis-
tance between “rotationally optimalblocks \aries greatly; it can be a conseeeatidock or a rotationallyde-
layed block depending on systarharacteristics. Oa processor with an input/output channel that does not re-
quire aly processor intervention between matsrage transfer requestsotaonsecutie dsk blocks can often be
accessed withousuffering losttime because of an intexming disk reolution. For processors withouinput/out-
put channelsthe main processor must field an interrupt and prepare fow alisk transfer The expected time to
service this interrupt and schedula new dsk transfer depends on the speed

SMM:05-12 AFast File System for UNIX

of the main processor.

The plysical characteristics of each digkclude the number of blocks pe&ack and the rate at which the disk
spins. Theallocation routines use this information to cal- cultte number ofmilliseconds required to skipver
a Hock. Thecharacteristics othe processor include tleepected time to service anterrupt and schedule a
new disk transfer Given a Hock allocated to a file, the allo- cation routines calculate the number of blocks to skip
over so that the next block in the file will commto position under the diskead in the xpected amount of time
that it takes to start a walisk transfer operationFor programs that sequentially access large amounts of data, this
strat- egy minimizes the amount of time spent waiting for the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group sumimi@rynation includes
a oount of the wailable blocks in a cylinder group at filif- ent rotational positionsEight rotational positions are
distinguished, sdhe resolution of the summary information is 2 milliseconds for a typical 36@utien per
indexed by rota- tional position. Eachcomponent othe vector lists the indento the block map forvery data
block contained inits rotational positionWhen looking for an allocatable block, the system first looks through
the summary counts for eotational position with a non-zero block count. It then uses thiofithe rotational
position to find the appro- priate list to use to id@ough only the relent parts of the block map to find a free
block.

The parameter that defines the minimum numbemil- liseconds betweethe completion of a data transfer
and the initiation of another data transfer on the same cylinder can be changetinas a@en when the file system
is mounted and ae®. If a file system is parameterized lay out blocks with aotational separation of 2 mil-
liseconds, and the disk pack is thenvetbto a ystem that has a processor requirdhgmilliseconds to schedule a
disk operation, the throughput will drop precipitously because of lost disk rev- olionsearly gery block. If
the eventual target machine is knm, the file system can bparameterized for it ven though it is initially created
on a different pro- cessoEven if the mave is ot known in advance, the rota- tionlayout delay cate reconfig-
ured after the disk is mved so hat all further allocation is donbased on theharacteristics of the nehost.

A Fast File System for UNIX SMM:05-13

3.3 Layou policiees

The file system layouytolicies are divided into tavdistinct parts. At the top leel are global policies thatuse
file systemwide summary information to makdecisions rgarding the placementof newv inodes and data
blocks. Theseoutines are responsible for deciding the placementwfdiectories and filesThey aso calculate
rotationally optimal block layouts, and decide when to force a long seek w aylieder group because there
are insuficient blocksleft in the current cylinder group to do reasonable layoB&dow the global polig routines
are the locahllocation routines that use a locally optimal scheme to lay out data blocks.

Two methods for improving file systemerformance are to increase the locality of referencenitomize
seek latengas aescribed by [Tivedi80], and to impree the lay- outof datato male lamger transfers possible as de-
scribed by [Nevalainen77]. Theglobal layout policies try tamprove performance by clustering related infor
mation. Thg cannot attempt to localize aflata references, but must also tryspsead unrelated data among dif-
ferent cylinder groups. If too much localizationastempted, the locaylinder group mayun out of space forc-
ing the data to be scatteréd non-local cylinder groupsTaken to an extreme, total localization can result in
3 9nale huae cluster of data resemblina the old file svsi@he alobal nolicies tryo balance the tovconflictina

goals of local- izing data that is concurrently accessed while spreading out unrelated data.

One allocatable resource is inodes. Inodes are used to describe both files and dirémboigssof files in the
same directorare frequently accessed togethior exam- ple, the “list directorytommand often accesses the in-
ode for each file ina drectory The layout polig tries to place all the inodes of files indirectory in the same
cylinder group. To ensure that files are distuted throughout the disk, a different pglis used for directory
allocation. A new directory is placed in aytinder group that has a greater thasrage number of free inodes, and
the smalleshumber of directories already in it. The intent of this poigcto dlow the inode clustering pol-ycto
succeed most of the time. The allocation of inodes withiylinder group is done using a next fragrategy Al-
though thisallocates the inodes randomly within a cylin- der group, all the inodes partecular cylinder group
can be reaavith 8 to 16 disk transfers. (At most 16 disk transfers are required because a cylinder groupemay ha
no more than 2048 inodes.) This pugésamall and constant upper bound on the numbgrdisk transfers re-
quired toaccess the inodes for all the files in a directdrnycon- trast, the oldfile system typically requires one
disk

SMM:05-14 AFast File System for UNIX

transfer to fetch the inode for each file in a directory.

The other major resourds data blocks. Since data blocks for a file are typically accessed todle¢hgrol-
icy routines try to place all data blocks for a file in the saptieder group, preferably at rotationally optimal
positions in the sameylinder. The problem with allocating all the data blocks in the same cylinder group is that
large files will quickly useup available space in theytinder group, forcing a spillver to ather areasFurther us-
ing all the space in a cylinder group causes future allocationsydii@m the cylinder group to alsepill to other
areas. Ideallynone of the ylinder groups shouldver become completely full. The heuristic solution chosen is
to redirect block allocation to a different cylinder group when a file exceeds 48 kilobytes, enalyatmegabyte
there- after The newly chosen cylinder groups selected from thoseylinder groups that ha a geater thana
erage num- ber of free blocks lefAlthough big files tend to be spread outeo the disk, a mgsbyte of data is
typically accessible before a long seek mhst performed, and treost of one long seek per gabyte is small.

The global polig routines call local allocation rou- tines with requests for specific blocks. The étlcak-
tion routines will alvays allocate the requested block if itfiiee, otherwise it allocates a free block of the
guested size that is rotationally closest to the requested hlfotie global layout policies had completeforma-
tion, they could alvays request unused blocks and the allo- cation routimeddwbe reduced to simple book-
keeping. Havever, maintaining complete informatiois costly; thus the implementation of the global layout poli-
cy uses heuristics that emplg only partial information.

If arequested block is novalable, the local allo- cator uses a fourdkallocation strategy:

1) Usethe next gailable block rotationally closest to

the requested block on the samdinder. Itis

assumed here that head switching time is zero. On disk -------- ‘The first spillover point at 48 kilobytes is
the point at which a file om 4096 byte block file system first requires a single indirect block. djyjears to
be a naturaffirst point at whichto redirect block allocation. The other spiléo points are chosemvith the intent
of forcing block allocationto be redirected when a file has used about 25% of the ldatks in acylinder
group. Inobserving the ne file system in day to day use, the heuristics appeawork well in minimizing the
number of completely filled cylinder groups.

A Fast File Svstem for LUUNIX SMM:05-15

controllers wherehis is not the case, it may be pos-
sible to incorporate the time required to switch
between dislplatters when constructing the rotational
layout tables. This, hower, has not yet been tried.

2) If there are no blockssalable on the same cylinder,
use a block within the same cylinder group.

3) If that cylinder group is entirely full, quadratically
hash the cylinder group number to choose another cylin-
der group to look for a free block.

4) Finallyif the hash fails, apply aexhaustve sarch
to all cylinder groups.

Quadratic hasls used because of its speed in finding unused slots in nearlyasii tables [Knuth75].File
systems that are parameterized to maintain at least 10% free space rarely use tfyis Steasystems thatre run
without maintaining ay free spaceypically have © few free blocks that almost prallocation is random;the
most importantcharacteristic of the strapg used under such conditions is that the strategy be fast.

4. FRerformmamaoces

Ultimately, the proof of the déctiveness of the algo- rithmsescribed in th@revious section is the long term
performance of the mefile system.

Our empirical studies ka sown that the inoddayout poliy has beereffective. When running the “list direc-
tory” command on a lgee directory that itself contaimsary directories (to forceéhe system to access inodes in
multiple g/linder groups), the number of diskccesses fdnodes is cut by a factor of bw Theimprovements are
even more dramatic for large directories containiogly files, disk accesses for inodes betng by a factor of
eight. Thisis most encouraging for programs such as spoatiag- mons that access rgaamall files, since these
programs tend to flood the disk request queue on the old file system.

Table 2 summarizes the measured throughputhef nev file system. Several comments neetb be made
about the conditions under which these tests were run. The test pro- greassire theate at which user pro-
grams can transfer data to or from a file without performirygpeacessing oiit. Theseprograms must read and
write enough data to insure thatffering in the operating system does afiect the results. Theare also run
at least three times in succession; the first totlget system into a km stateand thesecond tw to insure that
the experiment has

SMM:05-16 AFast File System for UNIX

stabilized and is repeatablelThe tests used and theasults are discussed in detail in [Kridle83]jhe systems
were running multi-user but were otherwise quiescent. Thasemo contentiofor either the CPU or the disk arm.
The only difference between the UNUB and MASSBUS tests was the controlleill tests used an AMPEX
Capricorn 330 mgebyte Winchester disk. As Table 2 st& all file system tesuns were on a AX 11/750.
All file systems had been in production use for at least a month bké&ing measured. Thsame number of sys-
tem calls were performed in all tests; the basic system walh@ad was a mgigible portion ofthe total running
time of the tests.

+ + + | Type of Processor and | Read
Fle System Bus Measured | Foeed Bandwidth % CPU |
+ + + | old 1024 750/UNIRIS | 29 Kbhvtes/sec

29/983 3% 11% ||newv 4096/1024 750/UNIBS |221 Kbytes/sec221/983 22% 43% ||newv 8192/1024
750/UNIBUS | 233 Kbytes/sec 233/983 24%29% ||nav 4096/1024 750/MASSBS | 466 Kbytes/sec
466/983 47% 73% | |[nev 8192/1024 750/MASSBS | 466 Kbytes/sec 466/983 47% 54% |

+ + + Table 2a - Reading rates of the old and RiNIX file
systems.

+ + + | Type of Processor and | Write

| | Fle System Bus Measured | Foeed Bandwidth % CPU |
+ + + | old 1024 750/UNIBUS | 48 Kbytes/sec

48/983 5% 29% ||new 4096/1024 750/UNIBIS |142 Kbytes/sec 142/983 14%43% ||nev 8192/1024

750/UNIBUS | 215 Kbytes/sec 215/983 22%46% ||nev 4096/1024 750/MASSBS | 323 Kbytes/sec

323/983 33% 94% | [nev 8192/1024 750/MASSBS | 466 Kbytes/sec 466/983 47% 95% |
+ + Table 2b - Writing rates of the old andwn&NIX file

4
T

systems.

Unlike the old file system, the transfer rates for the fike system do not appedo change wer time. The
throughput ratés tied much more strongly to the amount of free space that is maintdihedneasurements iaT
ble 2 were based amfile system with a 10% free space reser@ynthetiavork loads suggest that throughput de-
teriorates to about half the ratesayi in Table 2 when the file systems are full.

The percentage of bandwidthvgn in Table 2 is a mea- suref the efective uilization of the disk by the file
----------- 1 A UNIX commandthat is similar to the reading test that we used is “cp file/fddl”, where“file” is
eight mgabytes long.

A Fast File System for UNIX SMM:05-17

system. Anupper bound on the transfer rate frahe diskis calculatedoy multiplying the number of bytes on a
track by the number of velutions of the diskper second. The bandwidth is calculated by comparing the data
rates the file system is able to aekies a percentage of this rate. Using this metti® old file system is only
able to use about 3-5% of the disk bandwidth, while tmefite systermuses up to 47% of the bandwidth.

Both reads and writes are faster in thev sgstem than in the old system. The biggest factothis speedup is
because of thkarger block size used by thewéle sys- tem. Thewerhead of allocating blocks in thewaystem
is greaterthan the werhead of allocating blocks in the old systemwieer fewer blocks need to be allocated in
the nev system becaustney are bigger The net dect is that the cost per byte allocated is about the same for both
systems.

In the nev file system, the reading rate isvays at least as fast as the writing raféis is to be epected since
the kernel mustio more work when allocating blocks than when simply reading théote thatthe write rates
are abouthe same as the read rates in the 8192 byte block file system; the write rates are slower thamates read
in the4096 byte block file system. The slower write rates occur becausertiet kas to do twice as mpadisk al-
lo- cationsper secondmnaking the processor unable to keep up with the disk transfer rate.

In contrast the old file system is about 50tér at writing fileshan reading them. This is because the write
system call is asynchronous and the kernel can generate disk trestpfiests muchaster tharthey can be ser
viced, hence disk transfers queue mp the disk liffer cache. Becaudbe disk luffer cache is sorted by mini-
mum seek dis- tance, theesage seek between the scheduled disk writes is nhegh tharit would be if the data
blocks were written out in the random disk order in whibby are generated. Heever when the file is read, the
read system call is pro- cessed synchronously so the disk biogks be retriged from the disk irthe non-opti-
mal seek order in which there requested. This forces the disk schedtiterdo longseeks resulting in aveer
throughput rate.

In the nev system the blocks of a file are more opti- mally ordered on the &egén though reads are still syn-
chronous, the requesise presented to the disk in a much better orHeen though the writesare still asynchro-
nous, thg are already presented to the disk in minimum seek order so there is no danhad by reordering
them Hencdhe disk seek latencies that limited the old file svs- teve htile effect in the ne file svstem The

cost of allocation is the factor in the wmeystem that causes writes to be slower than reads.

SMM:05-18 AFast File System for UNIX

The performance of the wefile system is currentlymited by memory to memory cgpperations required to
move data from disk bffers in the systers’aldress space to dataffers inthe useis address space. These gop
operations account for abod0% of the time spent performing amput/output operation. If theuffers in both
address spa- ces were properly aligned, this transfer could be performed witpging by using the VAX virtual
memory management hardve. Thiswould be especially desirable when transfémg large amounts of data.
We dd not implement this because it would change the user interface to the file syis- tam major ways: user
programs would be required to allocatéfers on page boundaries, and dateuld disap-pear from bffers after
being written.

Greater diskhroughput could be achied by rewriting the disk dwers to chaintogether kernel wifers. This
would allov contiguous diskblocks to be read in a single disk transactibtany disks used with UNIX systems
contain either32 or 48 512 bytasectors per trackEach track holds exactly twor three 8192 byte file system
blocks, or four orsix 4096 byte file system block3he inability to use contiguous disk block$eefively limits
the perfor mance on these disks to less than 50% of vhitahle band- width. If the next block for a file cannot be
laid out con- tiguouslythen the minimum spacing to thexhallocatable block on grplatter is between a sixth and
a half a revolu- tion. The implication of thids that the best possible layout without contiguous blocks uses only
half of the band- widthof ary given track. Ifeach track contains an odd number of sectors, then it is possible to
resole the rota- tional delay to gnnumber of sectors by finding a block that begins at the desired rotaponal
sition on anothetrack. Thereason that block chaining has not been imple- mented is because it would require
rewriting all the diskdrivers inthe system, and the current throughput rates are already limited by the speed of the
awailable processors.

Currently only one block is allocated tofiée at atime. A technique used biype DEMOS file system when it
finds that a file is growing rapidlis to preallocate sev- erdblocks at once, releasing them when the file is closed if
they remain unused. By batching up allocations, the sys- tem can reducestheaa of allocating at each write,
and it can cut down on the number of disk writes needddép the block pointerson the disk synchronized with
the block allocation [Reell79]. This technique was not includdzbcause block allocation currendgcounts
for less than 10% of the time spenténwite system call and, onaagin, the currenthroughput rates are al-
ready limited by the speed of theatable processors.

A Fast File System for UNIX SMM:05-19

%. HAl e systeam fumcatiomdesemhamcenmemts

The performance enhancements to thlIX file system did notequire ag changes to the semantics or data
struc- tures visible taapplication programs.However, sveaal changes had been generally desired for some time
but had not been introduced becauseytiveuld require users to dump and restaile their file systems. Since the
new file system already required altigting file systems to be dumped and restoréese functionaénhance-
ments were introduced at this time.

S 1M1 Il om file mammeess

File names can mo be of rearly arbitrary length. Only programs that read directories are affected by this
change. @ promote portability to UNIX systems that are noinning the ne file system, a set of directory access
routines hge been introduced to provide a consistent interface to direc- tories on both oldwasgstems.

Directories are allocated in 512 byiaits called chunks. This size is chosen so that each allocatiobecan
transferred talisk in a single operationChunks are bro-dn up into variable length records termelirectory
entries. Adirectory entry contains the information neces- sary to map the name of a file to its associatetloode.
directory entry is allowed tepan multiple chunksThe first three fields of a directory entry are fixed length and
contain: an inode numhethe size of the entrgnd the length of the file name contained in the enthe remain-
der ofan entry is variable length and contains a nulirenated file name, padded to a 4 byte bound&@he maxi-
mum length of a file name in a directory is currently 255-céers.

Available space in a directory isecorded by hang one or more entries accumulate the free space in their entry
size fields. This results imirectory entries that ararger than required to hold the entmgme plus figd
length fields. Space allocated to a directory showidya be completely accounted for by totaling up the sizes of
its entries.When an entry is deleteftom a directory its space is returned to a previous entry in the same directo-
ry chunk by increasing the size of thepoais entry by the size of ttéeleted entry If the first entry of a direc-
tory chunk is free, then the entsyihode number is set to zero to indicate that it is unallocated.

5.2 Hil e oekimg

The old file system had no provision for locking files. Processes that needed to synchronize the updéles of
had to use a separate “lotk’le. A process would try to

SMM:05-20 AFast File System for UNIX

create a‘'lock’ file. If the creation succeeded, then the proosssld proceed with its update; tlie creation

failed, then the process wouldaw and try agin. Thismechanism hathree dravbacks. Processe®mnsumed

CPU time by looping er attempts to create locks. Locks left lying around because of system crashes had to be
manually remwed (hormally in a systenstartup command script)Finally, processes running as system adminis-
trator are akays permit- ted to create files, so were forced to use a different mech- awife it is possible to

get around all these prob- lems, the solutions are not straigharfhrao a mechanism for locking files has been
added.

The most general schemakow multiple processes to concurrently update a fdeveral of these techniques
are discussed in [Peterson83.simpler technique is to seri- alize access to a file attks. T datain reason-
able eficiengy, certain applications require the ability to lock pieces of a file. Locking down to the bgtehlas
been implementedn the Onyx file system by [Bass81]However, for the standard system applications, a mecha-
nism that locks at the granularity of a file is sufficient.

Locking schemes fall into twdasses, those using hard locks and those using advisory |@bles.primary
differ- ence betweeradvisory locks and hard locks is the extent of enforcemariard lock is alvays enforced
when a program trieso access a filean advisory lock is only applied when it is requested by a progiidms
advisory locks are onlyeffectve when allprograms accessing a file use the locking scheWigh hard locks
there must be somevaride poliy implemented irthe kernel. Wth advisory locks the policis left to the user
programs. In the UNIX system, programs with system administratoiege are allowederride ary protec-
tion scheme. Because mamwf the pro- grams that need to ueeks must also run as the system administrator
we chose to implement advisotgcks rather than creatn additional protection scheme that was incon- sistent
with the UNIX philosoply or could not be used bgystem administration programs.

files. Onlyone processay hae an exclusive lock on a file while mul- tiple shared locks may be presBoath
shared and »&lu- sive locks cannot be present on a file at the same time.ylfcak is requested when another
process holdsain exclu- sive lock, or arexclusive lock is requested when another process holgs$amik, the lock
request will block until the lock can be obtaineBecause shared andatusive locks are advisory onlgven if
anocess has obtainedlack on a file another nrocess mav access the file

A Fast File System for UNIX SMM:05-21

Locks areapplied or remeed only on open files. This means that locks can be manipulated without needing to
close andreopen a file. This igseful, for example, when a process wishes to apply a shared lock, read some in-
formation anddetermine whethean update is required, then apply an exekikick and update the file.

A request for a lock will cause a procesdilock if the lock can not be immediately obtainebh certain in-
stances this is unsatsftory For example, a process thatamis only to check if a lock is present would require a
separate mechanism to find out tliigormation. Conseguently a pocess may specify thas locking request
should return with an error if a lock can not be immediately obtairgeing able to conditionallyequest a lock
is useful to ‘daemon’ processes that wish to service a spool- arga. If the firstinstance of the daemon locks
the directory where spooling tak place, later daemon processes easily checko see if an aote daemon gists.
Since locks ®ist only while thelocking processes exist, lock files carnvardbe left actve dter the processexie
or if the system crashes.

Almost no deadlock detection &ttempted. Theonly deadlockdetection done bthe system is that the file to
which a lock is applied must not alreadywéa bck of the same type (i.e. the second af tweccessie alls to ap-
ply a lock of the same type will fail).

5.3 Symmbbolic imkks

The traditional UNIX file system allows multiple direc- toentries inthe same file system to reference a single
file. Eachdirectory entry‘links’’ a file's rame to an inode and its contents. Tin& concept is fundamental;
inodes do not reside in directorielsut exist separatelyand are referenced by links. When all the links to an inode
are remweed, the inode is deallocated. This style of re@cing an inode doeasot allov references across ysi-

to the scheme used by Multics [Feiertag7Mehbeen added.

A symbolic link is implemented as a file that containpahname. Wherhe system encounteassmbolic
link while interpreting a component of a pathnantiee contents of the symbolimk is prepended to the rest of
the path- name, and this name is interpretediédd the resultingpathname. IUNIX, pathnames are specified
relative o the root of the file system hierargh or relatve t aprocess aurrent working directory Path-
names specified relaé o the root are called absolutgathnames. &h- namesspecified relatie © the current
working directory are termed rela#i pathnames. & symbolic link contains

SMM:05-22 AFast File System for UNIX

an absolutpathname, the absolute pathname is used,-atlig the contents of the symbolic link igakiated rela-
tive 1 the location of the link in the file hierarch

Normally programs do not want to bevaie that there is a symbolic link in a pathname thay #me using.
However certain systenutilities must be able to detect and manipu- late symbolic links. Thieespstem calls
provide theability to detect, read, andrite symbolic links; seen system utilities required changes to use these
calls.

In future Berleley software distributions it may bpossible toreference file systems located on remote
machines using pathnames. When this occurs, it will be pos- sible to create symbolic links that span machines.

5.4 Remamme

Programs thatreate a n& version of an existing file typically create themwersion asa tmporary file and
then rename theemporary file with the name of the gat file. In the old UNIX file system renamingquired
three callsto the system. I& program were interrupted or the system crashed between these callsgehdilear
could be left with only its temporary namdo diminate this possi- bility ther e n a me_g/stem call has been
added. Therename call does the rename operation in a fashion that guarantees the existence of the target name.

Rename works both on data files and directories. When renadiiagtories, the system must do specall-v
dation checks to insure that the directory tetricture is not corrupted lfge creation of loops or inaccessible di-
recto- ries. Such corruption would occir a parent directory were med into one of its descendants. The
validation check requires tracing the descendents of thettatirec- tory tansure that it does not include the direc-
tory being moed.

5.5 Quotas

The UNIX system has traditionallpttempted to share allvalable resources to thgreatest extent possible.
Thus ap single user can allocate all theadable space in the file systenn certain environments this is unaccept-
able. Consequentln quota mechanism habeen added for restricting tlenount of file system resources that a
user can obtain. The quota mechanism dietts on both the number of inodesd the number of disk blocks
that a user may allocat@ separate quota can be set for each useeachfile system. Resources ag&en both
a hard and a soft limit.When a program exceeds a soft limitwarning is printed onthe users terminal; the of-
fending program is not terminated unless it exceeds its hard liflieé idea

A Fast File System for UNIX SMM:05-23

is that users should stdelov their soft limit between login sessions, butytmay use more resourceshile
they are actvely working. To encourage this bek#or, users are warned when logging in if yhare over any of
their softlimits. If users fails to correct the problem for too méwgin sessions, tlyeare eventually reprimanded
by having their soft limit enforced as their hard limit.

Mcikmovwlediggeemmeamts

We thank Robert Elz for his ongoing interest in thevtide system, and for adding disk quotasanrational and
efficient manner We dso acknavledge Dennis Ritchie for his suggestions on the appropriate modifications to the
user interdce. V¢ gpreciate Michael Reell’s explanations on he the DEMOS file system avrked; may of his
ideas were used in this implementation. Spemahmendation goes to Peter Kessler and Robert Henry for acting
like real usersluring the early dalgging stage when file systems were less stable thawsttbald hae keen. The
criticisms and sug- gestionBy the reiews contriluted significantly to the coherence of the pageénally we
thank our sponsors, the National Sciencairigation under grant MCS80-05144, and the Defense Advance Re-
search Projects Agenc(DoD) under ARR Order No0.4031 monitored by Nal Electronic System Command
under Contract No. NO0039-82-C-0235.

Referemces

[Almes78] AlmesG., and Robertson, G. "An Exten-
sible File System for Hydra" Proceedings
of the Third International Conference on
Software Enaineerina |IEEE Mav 1978

[Bass81] Bass,J. "ImplementationDescription
for File Locking", Onyx Systems Inc, 73
E. Trimble Rd, Sadose, CA 95131 Jan
1981.

[Feiertag71] Feiertadk. J. and Oganick, E. 1.,
"The MulticsInput-Output System", Pro-
ceedings of the Third Symposium on Oper-
ating Systems Principles, ACM, Oct 1971.
pp 35-41

[Ferrin82a] FerrinT.E., "Performanceand Rolbist-
ness Impreements in ‘érsion 7 UNIX",
Computer Graphicd aboratory Echnical
Report 2, School of PharmadJniversity

SMM:05-24 AFast File System for UNIX

of California, San Francisco, January
1982. Presentedt the 1982 \Witer
Usenix Conference, Santdonica, Cali-
fornia.

[Ferrin82b] Ferrin, T.E., "Performance Issuse§
VMUNIX Revisited", ;login: (The Usenix
Association Nesletter), Vol 7, #5,
November 1982. pp 3-6

[Kridle83] Kridle, R., and McKisick, M., "Perfor
mance Hicts of Disk Subsystem Choices
for VAX SystemsRunning 4.2BSD UNIX",
Computer Systems Research Group, Dept of
EECS, Berkley, CA 94720, Echnical
Report #8.

[Kowdski78] Kowdski, T. "FSCK -The UNIX System
Check Program”, Bell Laboratqryurray
Hill, NJ 07974. March 1978

[Knuth75] Kunth, D. "The Art of Computer Program-
ming", Volume 3 - Sorting and Searching,
Addison-Weslg Publishing Compaylinc,
Reading, Mass, 1975. pp 506-549

[Maruyama76] Maruyam&., and Smith, S. "Optimal
reoganization of Distributed Space Disk
Files", CACM, 19, 11. Ne 1976. pp
634-642

[Nevalainen77] Nealainen, O.\esterinen, M. "Deter-
mining Blocking Rctors for Sequential
Files by Heuristic MethodsThe Com-
puter Journal, 20, 3. Aug 1977. pp
245-247

IPechura83l PechuraM and Schoefflerl "Esti-

mating File Access ifhe of Flopy
Disks", CACM, 26, 10. Oct 1983. pp
754-763

[Peterson83] PetersoB, "Concurrent Reading While
Writing”, ACM Transactions on Program-
ming Languages and System&M, 5, 1.
Jan 1983. pp 46-55

[Powell79] Pavell, M. "The DEMOS FileSystem",
Proceedings of th&ixth Symposium on
Operating Systems PrinciplesCM, Nov
1977. pp 33-42

[Ritchie74] RitchieD. M. and Thompson, K., "The
UNIX Time-Sharing System'CACM 17, 7.

A Fast File System for UNIX SMM:05-25

July 1974. pp 365-375

[Smith81a] Smith,A. "Input/Output Optimization
and DiskArchitectures: A Surey', Per-
formance and Evaluation 1. Jan 1981. pp
104-117

[Smith81b] SmithA. "Bibliography on Fle and 1/O
System Optimization and Related Topics",
Operating Systems Riew, 15, 4.0ct
1981. pp 39-54

[Symbolics81] "Symbolic&ile System”, Symbolics Inc,
9600 DeSoto ®e, Chatsworth, CA 91311
Aug 1981.

[Thompson78] ThompsorK. "UNIX Implementation”,
Bell System Technical Journ&ly, 6,
part 2. pp 1931-1946 July-August 1978.

[Thompson80] ThompsonM. "Spice File System",
Carngyie-Mellon Unversity, Department
of Computer Science, Pittsburg) P5213
#CMU-CS-80, Sept 1980.

[Trivedi80] Trivedi, K. "Optimal Selection of CPU
Speed, Device Capabilities, and File
Assignments"”, Journal of the ACM, 27, 3.
July 1980. pp 457-473

[White80] White,R. M. "Disk Storage Technology",
Scientific American, 243(2)August
1980.

