
AA FFaasstt FFiill ee SSyysstteemm ffoorr UUNNIIXX**

_M_a_r_s_h_a_l_l _K_i_r_k _M_c_K_u_s_i_c_k_, _W_i_l_l_i_a_m _N_. _J_o_y_|_-_,
_S_a_m_u_e_l _J_. _L_e_f_f_l_e_r_|_=_, _R_o_b_e_r_t _S_. _F_a_b_r_y
Computer Systems Research Group

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

_A_B_S_T_R_A_C_T

A reimplementation of the UNIX file system is
described. Thereimplementation provides substan-
tially higher throughput rates by using more flex-
ible allocation policies that allow better local-
ity of reference and can beadapted to a wide
range of peripheral and processor characteristics.
The new file system clusters data that is sequen-
tially accessed and provides two block sizes to
allow fast access to large files while not wasting
large amounts ofspace for small files.File
access rates of upto ten times faster than the
traditional UNIX file system are experienced.
Long neededenhancements to the programmers’
interface are discussed. These includea mecha-
nism toplace advisory locks on files, extensions
of the name space across file systems, the ability
to uselong file names, and provisions for admin-
istrative control of resource usage.

Revised February 18, 1984

----------- * UNIX is a trademark of Bell Laboratories.|- William N. Joy is currently employed by: Sun Microsys-
tems, Inc, 2550Garcia Avenue, MountainView, CA 94043 |= Samuel J. Leffler is currentlyemployed by: Lu-
casfilm Ltd., PO Box 2009, San Rafael, CA 94912 This work was done under grants from the National Science
Foundation under grantMCS80-05144, and the Defense Advance Research Projects Agency (DoD) under ARPA
Order No. 4031 monitored by Naval Elec- tronic System Command under Contract No.N00039-82-C-0235.

SMM:05-2 AFast File System for UNIX

CR Categories and Subject Descriptors: D.4.3 [[OOppeerraattiinngg SSyyss-- tteemmss]]: File SystemsManagement - _f_i_l_e
_o_r_g_a_n_i_z_a_t_i_o_n_, _d_i_r_e_c_- _t_o_r_y _s_t_r_u_c_t_u_r_e_s_, _a_c_c_e_s_s _m_e_t_h_o_d_s; D.4.2 [[OOppeerraattiinngg

SSyysstteemmss]]: Storage Management - _a_l_l_o_c_a_t_i_o_n_/_d_e_a_l_l_o_c_a_t_i_o_n _s_t_r_a_t_e_g_i_e_s_, _s_e_c_o_n_d_a_r_y
_s_t_o_r_a_g_e _d_e_v_i_c_e_s; D.4.8 [[OOppeerraattiinngg SSyysstteemmss]]: Per- formance - _m_e_a_s_u_r_e_m_e_n_t_s_,
_o_p_e_r_a_t_i_o_n_a_l _a_n_a_l_y_s_i_s; H.3.2 [[IInnffoorr-- mmaattiioonn SSyysstteemmss]]: Information Storage - _f_i_l_e
_o_r_g_a_n_i_z_a_t_i_o_n

Additional Keywords and Phrases: UNIX, file system organiza- tion, file system performance, file system design,
applica- tion program interface.

General Terms: file system, measurement, performance.

A Fast File System for UNIX SMM:05-3

TT AABBLLEE OOFF CCOONNTTEENNTTSS

11.. IInnttrroodduuccttiioonn

22.. OOlldd ffiillee ssyysstteemm

33.. NNee wwffiill ee ssyysstteemm oorr ggaanniizzaattiioonn 3.1. Optimizingstorage utilization 3.2. File system parameteriza-
tion 3.3. Layout policies

44.. PPeerrffoorrmmaannccee

55.. FFiill ee ssyysstteemm ffuunnccttiioonnaall eennhhaanncceemmeennttss 5.1. Longfile names 5.2. File locking 5.3. Symbolic
links 5.4. Rename 5.5. Quotas

AAcckknnoo wwlleeddggeemmeennttss

RReeffeerreenncceess

11.. IInnttrroodduuccttiioonn

This paper describes the changes from the original512 byte UNIX file system to the new one released with the
4.2 Berkeley Software Distribution. It presents the motivations for the changes,the methods used to effect these
changes, the rationale behind the design decisions, and a description of the new implementation. Thisdiscussion is
followed by a summary of the results that have been obtained, directionsfor future work, and theadditions and
changes that have been made to the facilities that are available to program-mers.

The original UNIX system that runs on thePDP-11|- has simpleand elegant file system facilities. Filesystem
input/output is buffered by the kernel; there are noalign- ment constraints on datatransfers and all operations are
made to appear synchronous.All transfers to thedisk are in 512 byteblocks, which can be placed arbitrarily
within the data area of the file system.Vi rtually no constraints otherthan available diskspace are placed on file
growth [Ritchie74], [Thompson78].*

----------- |- DEC, PDP, VAX, MASSBUS, and UNIBUS are trade- marks of Digital Equipment Corporation.* I n
practice, a file’s size is constrained to be less than about one gigabyte.

SMM:05-4 AFast File System for UNIX

When used on the VAX-11 together with otherUNIX enhancements, the original 512byte UNIX file sys-
tem is incapable of providing the data throughput rates that many applications require.For example, applications
such as VLSI design andimage processing do a small amount of pro- cessing on a large quantities of data and
need to have ahigh throughput from the file system.High throughput rates are also needed by programs that map
files from the file system into large virtualaddress spaces.Paging data in and out of the file system islikely to
occur frequently[Ferrin82b]. This requires a file system providing higher bandwidth than the original 512 byte
UNIX one that provides only about two percent of themaximum disk bandwidth or about 20 kilobytes per sec-
ond per arm [White80], [Smith81b].

Modifications have been made to the UNIX file system to improve its performance. Since the UNIX file system
inter- face is well understood and not inherently slow, this devel- opment retainedthe abstraction and simply
changed the underlying implementationto increase its throughput. Con- sequently, users of the system have not
been faced with mas- sive software conversion.

Problems with filesystem performance have been dealt with extensively in the literature;see [Smith81a] for a
survey. Previous work to improve the UNIX file system per- formance has been done by [Ferrin82a].The UNIX
operating systemdrew many of i ts ideas from Multics, a large, high performanceoperating system [Feiertag71].
Other work includesHydra [Almes78], Spice [Thompson80],and a file system for a LISP environment [Symbol-
ics81]. A good intro- duction to thephysical latencies of disks is described in [Pechura83].

22.. OOlldd FFiill ee SSyysstteemm

In the file system developed at Bell Laboratories (the ‘‘traditional’’ fi le system), each diskdrive is divided into
one or more partitions. Each of these diskpartitions may contain one file system.A file system never spans mul-
tiple partitions.|- A file system is described by its super- block, which contains the basic parameters of the filesys-
tem. Theseinclude thenumber of data blocks in the file ----------- |- By ‘‘partition’’ here we refer tothe subdivi-
sion of physical spaceon a disk drive. In the traditional file system, as in the new file sys- tem, file systems are
really located in logical disk partitions that may overlap. This overlap- ping is made available, for example, to al-
low pro- grams to copy entire disk drives containing multi- ple file systems.

A Fast File System for UNIX SMM:05-5

system, a count ofthe maximum number of files, and a pointer to the _f_r_e_e _l_i_s_t, alinked list of all the free
blocks in the file system.

Within the file system are files.Certain files are distinguished as directoriesand contain pointers to files that
may themselves be directories.Every file has a descriptor associated with it calledan _i_n_o_d_e. An inode
contains information describing ownership of the file,time stampsmarking last modificationand access times for
the file, and an array of indices that point to the data blocks forthe file. For the purposes of this section, we as-
sume that the first 8 blocks of the file are directly referenced by values stored in an inode itself*.An inode may
also containreferences to indirect blockscontaining further data block indices.In a file system with a 512 byte
block size, a singly indirect blockcontains 128 further block addresses, a doubly indirect block contains 128 ad-
dresses of furthersingly indirect blocks, and a triply indirect block contains 128 addresses of further doubly indirect
blocks.

A 150 megabyte traditional UNIX file system consists of 4megabytes of inodes followed by 146 megabytes of
data. Thisorganization segregates the inode information from the data; thus accessing a file normally incurs a long
seek from the file’s inode to its data.Files in a single directory are not typically allocated consecutive slots in
the 4 megabytes of inodes, causing many non-consecutive blocks of inodes to be accessed when executing oper-
ations on the inodes of several files in a directory.

The allocation of data blocks to files is also subopti- mum. The traditional file system never transfers more than
512 bytes per disk transaction and often finds that the next sequentialdata blockis not on the same cylinder, forc-
ing seeks between 512 byte transfers.The combination of thesmall block size, limited read-ahead in the system,
and many seeks severely limits file system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliability and throughput.
The reliability was improved by staging modifications to criti- calfile system information sothat they could ei-
ther be completed or repaired cleanly by aprogram after a crash[Kow alski78]. Thefile system performance was
improved by a factor of more than two by changing the basic block size from 512 to 1024 bytes. Theincrease
was because of two factors: each disk transfer accessed twice as much data, and mostfiles couldbe described with-
out need to access indi- rect blocks since the direct blocks contained twice asmuch data. The file system with these
changes will henceforth be ----------- *The actualnumber may vary from system to sys- tem, but is usually in the
range 5-13.

SMM:05-6 AFast File System for UNIX

referred to as the _o_l_d _f_i_l_e _s_y_s_t_e_m_.

This performance improvement gav ea strong indicationthat increasing the block size was a good method for
improv- ing throughput. Although the throughputhad doubled, the old file systemwas still using only about four
percent of the disk bandwidth.The main problem was that although the freelist was initially ordered for opti-
mal access, it quickly became scrambled as files were created andremoved. Eventually the free list becameen-
tirely random, causing files to have their blocks allocated randomly over the disk. This forceda seek before every
block access. Although old file systems provided transfer rates of up to 175 kilobytes per second when they were
first created, this rate deterio- rated to 30 kilobytes per second after a few weeks of moder- ate use becauseof this
randomization of data block place- ment. There was no way of restoring the performanceof an old file system
except todump, rebuild, and restore the filesystem. Another possibility, as suggested by[Maruyama76],
would beto have a process that periodically reorganized the data on the disk to restore locality.

33.. NNee wwffiill ee ssyysstteemm oorr ggaanniizzaattiioonn

In the new file system organization (as in the old file systemorganization), eachdisk drive contains one or more
file systems.A file systemis described by its super- block, located at thebeginning of the file system’s disk
partition. Becausethe super-block contains critical data, it is replicated to protect against catastrophic loss. This is
done when the file system is created;since the super- block data does notchange, the copies need not be refer-
enced unless a head crash or other harddisk error causesthe default super-block to be unusable.

To insure that it is possible to create files as large as 2 ** 32 bytes with only two lev els of indirection, themini-
mum size of a file system block is 4096 bytes.The size of file system blocks can be any power of two greater than
or equal to 4096.The block size ofa file system is recorded in the file system’s super-block so it is possible for
file systems with different block sizes to be simultane- ously accessible on the same system. The block size must be
decided at the time that the file system is created; it can- not be subsequently changed without rebuilding the file sys-
tem.

The new file system organization divides a disk parti- tion into one ormore areas called _c_y_l_i_n_d_e_r
_g_r_o_u_p_s. A cylinder group is comprised of one ormore consecutive cylinders on a disk. Associated with
each cylinder group is some bookkeeping information that includes a redundant copy

A Fast File System for UNIX SMM:05-7

of the super-block, space for inodes, a bitmap describingavailable blocks in the cylinder group, and summary in-
forma- tion describing the usage of data blocks within the cylinder group. The bit map of available blocks in the
cylinder group replaces the traditional file system’s free list. For each cylinder groupa static number of inodes is
allocated at file system creation time.The default policy is to allocate one inode for each 2048 bytesof space
in the cylinder group, expecting this to be far more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each cylinder group.How-
ev er if this approach were used, all the redundant information would be on the topplatter. A single hardware
failure thatdestroyed the top platter could cause the loss of all redun- dant copies of the super-block. Thus the
cylinder groupbookkeeping informationbegins at a varying offset from the beginning of the cylinder group.The
offset for each suc-cessive cylinder groupis calculated to be about one track further from the beginning of the
cylinder group than the preceding cylinder group. In this way the redundant infor- mation spirals down into the
pack so that any single track,cylinder, or platter can be lost without losing all copies of the super-block. Except
for the first cylinder group, the space between thebeginning of the cylinder group and the beginning of the cylin-
der group information is used for data blocks.|-

33..11.. OOppttiimmiizziinngg ssttoorraaggee uuttiilliizzaattiioonn

Data is laid outso that larger blocks can be trans- ferred in a single disk transaction, greatly increasing file sys-
tem throughput. As anexample, consider a file in the new file system composed of 4096 byte data blocks.In the
old file system this filewould be composed of 1024 byte ----------- |- While it appears that the first cylinder group
could be laid outwith its super-block at the‘‘ known’’ l ocation, thiswould not work for file systems withblocks

sizes of 16 kilobytes orgreater. This is becauseof a requirement that the first 8 kilobytes of the disk be reserved
for a bootstrap program and aseparate requirement that the cylinder groupinformation begin on afile system
block boundary. To start the cylinder group on a file system block boundary, file sys- tems with block sizes larg-
er than8 kilobytes would have to leave an empty space between the end of the boot block and the beginning of the
cylin- der group.Without knowing the size ofthe file system blocks, the system would notknow what roundup
function to use to find the beginning ofthe first cylinder group.

SMM:05-8 AFast File System for UNIX

blocks. Byincreasing the block size, disk accesses in the new file system may transfer up to four times as much in-
for- mation per disk transaction. In large files,several 4096 byte blocksmay be allocated from the same cylinder
so that even larger data transfers are possible beforerequiring aseek.

The main problemwith larger blocks is that most UNIX file systems are composed of many small files. A uni-
formly large blocksize wastes space.Table 1 shows the effect of file system block size on the amount of wasted
space in the filesystem. Thefiles measuredto obtain these figures reside on one of our time sharing systems that
has roughly 1.2 gigabytes of on-line storage.The measurements are based on the active user file systems con-
taining about 920megabytes of formatted space.

+------------+---------+--+ |Space used | % waste | Organization
| +------------+---------+--+ | 775.2 Mb | 0.0 |Data only, no separation be-
tween files | | 807.8 Mb | 4.2 |Data only, each file starts on 512 byte boundary | | 828.7 Mb| 6.9 |Data
+ inodes, 512 byte block UNIX file system| | 866.5 Mb | 11.8 |Data + inodes, 1024 byte block UNIX file sys-
tem || 948.5 Mb | 22.4 |Data + inodes, 2048 byte block UNIX file system| | 1128.3 Mb | 45.6 |Data + inodes,
4096 byte block UNIX file system| +------------+---------+--+ Table 1 -
Amount of wasted space as a function of block size.

The space wasted is calculated to be the percentage of space on the disk not containing user data.As the block size
on the disk increases, the waste rises quickly, to an intolera- ble 45.6% waste with 4096 byte file system blocks.

To be able to use large blocks without undue waste, small files must be stored in a more efficient way. The
new file system accomplishes this goal by allowing thedivision of a single file system block into one or more
_f_r_a_g_m_e_n_t_s. The file system fragment size is specified at the time that thefile system is created; each file
system block can optionally be broken into 2, 4,or 8 fragments, each of which is addressable. Thelower bound
on the size of these fragments is constrained by the disk sector size, typically 512bytes. Theblock map associ-
ated with each cylinder group records the space available in a cylinder group at the fragmentlevel; to determine if
a block is available, aligned fragments are examined. Figure1 shows a piece of a mapfrom a 4096/1024 file
system. Eachbit in the map records the status of a fragment; an ‘‘X’ ’ shows that the fragment is inuse, while an
‘‘ O’’ shows that the fragment is available for allocation. In this example, fragments 0-5, 10, and11 are in use,
while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks cannot be used as a

A Fast File System for UNIX SMM:05-9

+-----------------+----------------------------+ |Bits in map | XXXX XXOO OOXX OOOO | |Fragment numbers |
0-3 4-7 8-11 12-15 | |Block numbers| 0 1 2 3 | +-----------------+----------------------------+ Figure 1

- Example layout of blocks and fragments in a 4096/1024 file system.

full block, even if they are large enough. In this example, fragments 6-9 cannot be allocatedas a full block; only
fragments 12-15 can be coalesced into a full block.

On afile system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is representedby zero
or more 4096 byte blocks ofdata, and possibly a single fragmented block.If a file system block must be frag-
mented toobtain space fora small amount of data, the remaining fragments of the block are made available for al-
location to other files. As an example consideran 11000 byte file stored on a 4096/1024 byte filesystem. This
file would usestwo full size blocks and one three fragment portion of another block. If no block with three aligned
fragments isavailable at the time the file is created, a full size block is split yieldingthe necessary fragments and
a single unusedfragment. Thisremaining fragment can be allocated to another file as needed.

Space is allocated to a filewhen a program does a_w_r_i_t_e system call. Each time data is written to a file, the
system checks to see if the size of the file has increased*.If the file needs to be expanded to hold the new data, one
of three conditions exists:

1) Thereis enough spaceleft in an already allocated
block or fragmentto hold the new data. Thenew data
is written into the available space.

2) Thefile contains no fragmented blocks(and the last
block in thefile contains insufficient space to hold
the new data). If space exists in a block already
allocated, the spaceis filled with new data. Ifthe
remainder of the new data containsmore than a full
block ofdata, a full block is allocated and the first
full block of new data is written there.This process
is repeated until lessthan a full block of new data
remains. Ifthe remaining new data to be written will
fit in less than a full block, a block with the neces-
sary fragments is located, otherwise afull block is
located. Theremaining new data is written into the ----------- * A program may be overwriting data in themid-

dle of an existing file in whichcase space would already have been allocated.

SMM:05-10 AFast File System for UNIX

located space.

3) Thefile contains one or more fragments (and the frag-
ments contain insufficient space to hold the new data).
If the size of the new data plus the size ofthe data
already in the fragments exceeds the size of a full
block, a new block is allocated. The contentsof the
fragments arecopied to the beginning of the block and
the remainder of the block isfilled with new data.
The process then continues as in (2) above. Otherwise,
if the new data to be written will fit in lessthan a
full block, a block withthe necessary fragments is
located, otherwise a full block is located.The con-
tents of theexisting fragments appended with the new
data are written into the allocated space.

The problem with expanding a file one fragment ata atime is thatdata may be copied many times as a frag-
mented block expands to a full block.Fragment reallocation can be minimized if the user program writes a full
block at a time, except for a partial block at the end ofthe file. Since file systems with different block sizes may
reside on the same system, the file system interface has been extended toprovide applicationprograms the optimal

size for a read or write.For files the optimal size is the block size ofthe file system on which the file is being ac-
cessed. For other objects, such as pipes and sockets, the optimal size is the underlyingbuffer size. Thisfeature is
used by the Stan- dard Input/Output Library, a package used by most userpro- grams. This featureis also used by
certain system utili- ties such as archivers and loaders that do theirown input andoutput management and need
the highest possible file system bandwidth.

The amount of wasted space in the4096/1024 byte new file system organization is empirically observed to be
about the same as in the 1024 byte old filesystem organization. A file systemwith 4096 byte blocks and 512 byte
fragments has about the same amount of wasted space asthe 512 byteblock UNIX file system. The new file sys-
tem uses less space than the 512 byte or 1024 bytefile systems for indexing information for large files and the
same amount of space for small files.These savings are offset by theneed to use more spacefor keeping track of
available free blocks.The net result is about the same diskutilization when a new file system’s fragment size
equals anold file system’s block size.

In order for the layout policiesto be effective, afile system cannotbe kept completely full.For each file sys-
tem there is a parameter, termed the free spacereserve, that gives the minimum acceptable percentage of file sys-
tem blocks that should be free. If the numberof free blocks drops below this level only the system administra-
tor can

A Fast File System for UNIX SMM:05-11

continue to allocate blocks. The value of this parameter may be changed at any time, even when the file system
is mounted and active. The transfer rates that appear insec- tion 4 were measured on file systems kept less than
90% full (a reserve of 10%). If the number of free blocksfalls to zero, the file systemthroughput tends to be cut
in half, because of the inability ofthe file system to localize blocks in a file. Ifa file system’s performance de-
grades because of overfilling, it may be restored by removing files until the amount of free space once again reaches
the mini- mum acceptable level. Accessrates for files created during periods of little free space may be restored by
moving their data once enough space is available. Thefree space reserve must beadded to the percentage of waste
when comparing the organizations given in Table 1. Thus, the percentage ofwaste in an old 1024 byte UNIX file
system is roughly compa- rable to a new 4096/512 byte file system with the free space reserve set at 5%.(Compare
11.8% wasted with the old file system to 6.9% waste + 5% reserved spacein the new file system.)

33..22.. FFiill ee ssyysstteemm ppaarraammeetteerriizzaattiioonn

Except for theinitial creation of the free list, the old file system ignores theparameters of the underlying
hardware. It has no information about either the physical characteristics of the mass storage device, or thehard-
ware that interacts with it.A goal of the new file system is to parameterize the processorcapabilities and mass
storage characteristics so that blocks can be allocated in an opti- mum configuration-dependent way. Parameters
used include the speed of theprocessor, the hardware support for mass storage transfers, and the characteristics of
the mass stor- age devices. Disktechnology is constantly improving and a given installation can have sev eral differ-
ent disk technolo- giesrunning on a singleprocessor. Each file system is parameterized so that it can be adapted
to the characteris- tics of the disk on which it is placed.

For mass storage devices such as disks, the new file system tries to allocate new blocks on the same cylinder as
the previous blockin the same file.Optimally, these new blocks will also be rotationally well positioned.The dis-
tance between ‘‘rotationally optimal’’ blocks varies greatly; it can be a consecutive block or a rotationallyde-
layed block depending on systemcharacteristics. Ona processor with an input/output channel that does not re-
quire any processor intervention between massstorage transfer requests, two consecutive disk blocks can often be
accessed withoutsuffering losttime because of an intervening disk revolution. For processors withoutinput/out-
put channels,the main processor must field an interrupt and prepare for a new disk transfer. The expected time to
service this inter- rupt and schedulea new disk transfer depends on the speed

SMM:05-12 AFast File System for UNIX

of the main processor.

The physical characteristics of each diskinclude the number of blocks pertrack and the rate at which the disk
spins. Theallocation routines use this information to cal- culatethe number ofmilliseconds required to skip over
a block. Thecharacteristics ofthe processor include theexpected time to service aninterrupt and schedule a
new disk transfer. Giv en a block allocated to a file, the allo- cation routines calculate the number of blocks to skip
over so that the next block in the file will comeinto position under the diskhead in the expected amount of time
that it takes to start a new disk transfer operation.For programs that sequentially access large amounts of data, this
strat- egy minimizes the amount of time spent waiting for the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summaryinformation includes
a count of the available blocks in a cylinder group at differ- ent rotational positions.Eight rotational positions are
distinguished, sothe resolution of the summary information is 2 milliseconds for a typical 3600 revolution per
minute drive. The super-block containsa vector of lists called _r_o_t_a_t_i_o_n_a_l _l_a_y_o_u_t _t_a_b_l_e_s. Thevector is
indexed by rota- tional position. Eachcomponent ofthe vector lists the index into the block map for every data
block contained in its rotational position.When looking for an allocatable block, the system first looks through
the summary counts for arotational position with a non-zero block count. It then uses the index of the rotational
position to find the appro- priate list to use to index through only the relevant parts of the block map to find a free
block.

The parameter that defines the minimum numberof mil- liseconds betweenthe completion of a data transfer
and the initiation of another data transfer on the same cylinder can be changed at any time, even when the file system
is mounted and active. If a file system is parameterizedto lay out blocks with arotational separation of 2 mil-
liseconds, and the disk pack is then moved to a system that has a processor requiring4 milliseconds to schedule a
disk operation, the throughput will drop precipitously because of lost disk rev- olutionson nearly every block. If
the eventual target machine is known, the file system can beparameterized for it even though it is initially created
on a different pro- cessor. Even if the move is not known in advance, the rota- tionallayout delay canbe reconfig-
ured after the disk is moved so that all further allocation is donebased on thecharacteristics of the new host.

A Fast File System for UNIX SMM:05-13

33..33.. LLaayyoouutt ppoolliicciieess

The file system layoutpolicies are divided into two distinct parts.At the top level are global policies thatuse
file systemwide summary information to make decisions regarding the placementof new inodes and data
blocks. Theseroutines are responsible for deciding the placement of new directories and files.They also calculate
rotationally optimal block layouts, and decide when to force a long seek to a new cylinder group because there
are insufficient blocks left in the current cylinder group to do reasonable layouts.Below the global policy routines
are the localallocation routines that use a locally optimal scheme to lay out data blocks.

Tw o methods for improving file systemperformance are to increase the locality of reference tominimize
seek latency as described by [Trivedi80], and to improve the lay- outof datato make larger transfers possible as de-
scribed by [Nevalainen77]. Theglobal layout policies try toimprove performance by clustering related infor-
mation. They cannot attempt to localize alldata references, but must also try tospread unrelated data among dif-
ferent cylinder groups. If too much localization isattempted, the localcylinder group mayrun out of space forc-
ing the data to be scatteredto non-local cylinder groups.Taken to an extreme, total localization can result in
a single huge cluster of data resembling the old file system.The global policies tryto balance the two conflicting

goals of local- izing data that is concurrently accessed while spreading out unrelated data.

One allocatable resource is inodes. Inodes are used to describe both files and directories.Inodes of files in the
same directoryare frequently accessed together. For exam- ple, the ‘‘list directory’’ command often accesses the in-
ode for each file ina directory. The layout policy tries to place all the inodes of files in adirectory in the same
cylinder group. To ensure that files are distributed throughout the disk, a different policy is used for direc-tory
allocation. A new directory is placed in a cylinder group that has a greater than average number of free inodes, and
the smallestnumber of directories already in it. The intent of this policy is to allow the inode clustering pol- icy to
succeed most of the time. The allocation of inodes within a cylinder group is done using a next freestrategy. Al-
though thisallocates the inodes randomly within a cylin- der group, all the inodes for aparticular cylinder group
can be readwith 8 to 16 disk transfers. (At most 16 disk transfers are required because a cylinder group may have
no more than 2048 inodes.) This putsa small and constant upper bound on the numberof disk transfers re-
quired toaccess the inodes for all the files in a directory. In con- trast, the oldfile system typically requires one
disk

SMM:05-14 AFast File System for UNIX

transfer to fetch the inode for each file in a directory.

The other major resourceis data blocks. Since data blocks for a file are typically accessed together, the pol-
icy routines try to place all data blocks for a file in the same cylinder group, preferably at rotationally optimal
positions in the same cylinder. The problem with allocating all the data blocks in the same cylinder group is that
large files will quickly useup available space in the cylinder group, forcing a spill over to other areas.Further, us-
ing all the space in a cylinder group causes future allocations for any file in the cylinder group to alsospill to other
areas. Ideallynone of the cylinder groups should ever become completely full. The heuristic solution chosen is
to redirect block allocation to a different cylinder group when a file exceeds 48 kilobytes, and atev ery megabyte
there- after.* The newly chosen cylinder groupis selected from those cylinder groups that have a greater than av-
erage num- ber of free blocks left.Although big files tend to be spread out over the disk, a megabyte of data is
typically accessible before a long seek mustbe performed, and thecost of one long seek per megabyte is small.

The global policy routines call local allocation rou- tines with requests for specific blocks. The localalloca-
tion routines will always allocate the requested block if it isfree, otherwise it allocates a free block of there-
quested size that is rotationally closest to the requested block.If the global layout policies had completeinforma-
tion, they could always request unused blocks and the allo- cation routines would be reduced to simple book-
keeping. However, maintaining complete informationis costly; thus the implementation of the global layout poli-
cy uses heuris-tics that employ only partial information.

If a requested block is not available, the local allo- cator uses a four level allocation strategy:

1) Usethe next available block rotationally closest to
the requested block on the same cylinder. It is
assumed here that head switching time is zero. On disk ----------- *The first spillover point at 48 kilobytes is

the point at which a file ona 4096 byte block file system first requires a single indirect block. Thisappears to
be a naturalfirst point at whichto redirect block allocation. The other spillover points are chosenwith the intent
of forcing block allocationto be redirected when a file has used about 25% of the datablocks in acylinder
group. Inobserving the new file system in day to day use, the heuristics appearto work well in minimizing the
number of completely filled cylinder groups.

A Fast File System for UNIX SMM:05-15

controllers wherethis is not the case, it may be pos-
sible to incorporate the time required to switch
between diskplatters when constructing the rotational
layout tables. This, however, has not yet been tried.

2) If there are no blocks available on the same cylinder,
use a block within the same cylinder group.

3) If that cylinder group is entirely full, quadratically
hash the cylinder group number to choose another cylin-
der group to look for a free block.

4) Finally if the hash fails, apply anexhaustive search
to all cylinder groups.

Quadratic hashis used because of its speed in finding unused slots in nearly fullhash tables [Knuth75].File
systems that are parameterized to maintain at least 10% free space rarely use this strategy. File systems thatare run
without maintaining any free spacetypically have so few free blocks that almost any allocation is random;the
most importantcharacteristic of the strategy used under such conditions is that the strategy be fast.

44.. PPeerrffoorrmmaannccee

Ultimately, the proof of the effectiveness of the algo- rithmsdescribed in theprevious section is the long term
performance of the new file system.

Our empirical studies have shown that the inodelayout policy has beeneffective. When running the ‘‘list direc-
tory’’ command on a large directory that itself containsmany directories (to forcethe system to access inodes in
multiple cylinder groups), the number of diskaccesses forinodes is cut by a factor of two. Theimprovements are
ev en more dramatic for large directories containingonly files, disk accesses for inodes beingcut by a factor of
eight. Thisis most encouraging for programs such as spoolingdae- mons that access many small files, since these
programs tend to flood the disk request queue on the old file system.

Table 2 summarizes the measured throughput ofthe new file system. Several comments needto be made
about the conditions under which these tests were run. The test pro- gramsmeasure therate at which user pro-
grams can transfer data to or from a file without performing any processing onit. Theseprograms must read and
write enough data to insure that buffering in the operating system does notaffect the results. They are also run
at least three times in succession; the first to getthe system into a known stateand thesecond two to insure that
the experiment has

SMM:05-16 AFast File System for UNIX

stabilized and is repeatable.The tests used and theirresults are discussed in detail in [Kridle83]|-. Thesystems
were running multi-user but were otherwise quiescent. There was no contentionfor either the CPU or the disk arm.
The only difference between the UNIBUS and MASSBUS tests was the controller. All tests used an AMPEX
Capricorn 330 megabyte Winchester disk. As Table 2 shows, all file system testruns were on a VAX 11/750.
All file systems had been in production use for at least a month beforebeing measured. Thesame number of sys-
tem calls were performed in all tests; the basic system call overhead was a negligible portion ofthe total running
time of the tests.

+------------------------------+--------------------------------------+ | Type of Processor and | Read
| | File System Bus Measured | Speed Bandwidth % CPU |
+------------------------------+--------------------------------------+ | old 1024 750/UNIBUS | 29 Kbytes/sec

29/983 3% 11% | |new 4096/1024 750/UNIBUS | 221 Kbytes/sec 221/983 22% 43% | |new 8192/1024
750/UNIBUS | 233 Kbytes/sec 233/983 24%29% | |new 4096/1024 750/MASSBUS | 466 Kbytes/sec
466/983 47% 73% | |new 8192/1024 750/MASSBUS | 466 Kbytes/sec 466/983 47% 54% |
+------------------------------+--------------------------------------+ Table 2a - Reading rates of the old and new UNIX file
systems.

+------------------------------+--------------------------------------+ | Type of Processor and | Write
| | File System Bus Measured | Speed Bandwidth % CPU |
+------------------------------+--------------------------------------+ | old 1024 750/UNIBUS | 48 Kbytes/sec
48/983 5% 29% | |new 4096/1024 750/UNIBUS | 142 Kbytes/sec 142/983 14%43% | |new 8192/1024
750/UNIBUS | 215 Kbytes/sec 215/983 22%46% | |new 4096/1024 750/MASSBUS | 323 Kbytes/sec
323/983 33% 94% | |new 8192/1024 750/MASSBUS | 466 Kbytes/sec 466/983 47% 95% |
+------------------------------+--------------------------------------+ Table 2b - Writing rates of the old and new UNIX file
systems.

Unlike the old file system, the transfer rates for the new file system do not appearto change over time. The
throughput rateis tied much more strongly to the amount of free space that is maintained.The measurements in Ta-
ble 2 were based ona file system with a 10% free space reserve. Syntheticwork loads suggest that throughput de-
teriorates to about half the rates given in Table 2 when the file systems are full.

The percentage of bandwidth given in Table 2 is a mea- sureof the effective utilization of the disk by the file
----------- |- A UNIX commandthat is similar to the reading test that we used is ‘‘cp file /dev/null’’, where‘‘ file’’ i s
eight megabytes long.

A Fast File System for UNIX SMM:05-17

system. Anupper bound on the transfer rate fromthe diskis calculatedby multiplying the number of bytes on a
track by the number of revolutions of the diskper second. The bandwidth is calculated by comparing the data
rates the file system is able to achieve as a percentage of this rate. Using this metric,the old file system is only
able to use about 3-5% of the disk bandwidth, while the new file systemuses up to 47% of the bandwidth.

Both reads and writes are faster in the new system than in the old system. The biggest factor inthis speedup is
because of thelarger block size used by the new file sys- tem. The overhead of allocating blocks in the new system
is greaterthan the overhead of allocating blocks in the old system, however fewer blocks need to be allocated in
the new system becausethey are bigger. The net effect is that the cost per byte allocated is about the same for both
systems.

In the new file system, the reading rate is always at least as fast as the writing rate.This is to be expected since
the kernel mustdo more work when allocating blocks than when simply reading them.Note that the write rates
are aboutthe same as the read rates in the 8192 byte block file system; the write rates are slower than the readrates
in the4096 byte block file system. The slower write rates occur because the kernel has to do twice as many disk al-
lo- cationsper second,making the processor unable to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing filesthan reading them. This is because the write
system call is asynchronous and the kernel can generate disk transferrequests much faster thanthey can be ser-
viced, hence disk transfers queue upin the disk buffer cache. Becausethe disk buffer cache is sorted by mini-
mum seek dis- tance, the average seek between the scheduled disk writes is muchless thanit would be if the data
blocks were written out in the random disk order in whichthey are generated. However when the file is read, the
read system call is pro- cessed synchronously so the disk blocksmust be retrieved from the disk inthe non-opti-
mal seek order in which they are requested. This forces the disk schedulerto do longseeks resulting in a lower
throughput rate.

In the new system the blocks of a file are more opti- mally ordered on the disk.Even though reads are still syn-
chronous, the requestsare presented to the disk in a much better order. Even though the writesare still asynchro-
nous, they are already presented to the disk in minimum seek order so there is no gain tobe had by reordering
them. Hencethe disk seek latencies that limited the old file sys- tem have little effect in the new file system.The

cost of allocation is the factor in the new system that causes writes to be slower than reads.

SMM:05-18 AFast File System for UNIX

The performance of the new file system is currentlylimited by memory to memory copy operations required to
move data from disk buffers in the system’s address space to data buffers in the user’s address space. These copy
operations account for about40% of the time spent performing aninput/output operation. If the buffers in both
address spa- ces were properly aligned, this transfer could be performed withoutcopying byusing the VAX virtual
memory management hardware. Thiswould be especially desirable when transfer- ring large amounts of data.
We did not implement this because it would change the user interface to the file sys- temin two major ways: user
programs would be required to allocate buffers on page boundaries, and datawould disap-pear from buffers after
being written.

Greater diskthroughput could be achieved by rewriting the disk drivers to chaintogether kernel buffers. This
would allow contiguous diskblocks to be read in a single disk transaction.Many disks used with UNIX systems
contain either32 or 48 512 bytesectors per track.Each track holds exactly two or three 8192 byte file system
blocks, or four orsix 4096 byte file system blocks.The inability to use contiguous disk blocks effectively limits
the perfor- mance on these disks to less than 50% of the available band- width. If the next block for a file cannot be
laid out con- tiguously, then the minimum spacing to the next allocatable block on any platter is between a sixth and
a half a revolu- tion. The implication of thisis that the best possible layout without contiguous blocks uses only
half of the band- widthof any giv en track. If each track contains an odd number of sectors, then it is possible to
resolve the rota- tional delay to any number of sectors by finding a block that begins at the desired rotationalpo-
sition on anothertrack. The reason that block chaining has not been imple- mented is because it would require
rewriting all the diskdrivers in the system, and the current throughput rates are already limited by the speed of the
available processors.

Currently only one block is allocated to afile at atime. A technique used bythe DEMOS file system when it
finds that a file is growing rapidly, is to preallocate sev- eralblocks at once, releasing them when the file is closed if
they remain unused. By batching up allocations, the sys- tem can reduce the overhead of allocating at each write,
and it can cut down on the number of disk writes needed tokeep the block pointerson the disk synchronized with
the block allocation [Powell79]. This technique was not includedbecause block allocation currentlyaccounts
for less than 10% of the time spent ina write system call and, onceagain, the currentthroughput rates are al-
ready limited by the speed of the available processors.

A Fast File System for UNIX SMM:05-19

55.. FFiill ee ssyysstteemm ffuunnccttiioonnaall eennhhaanncceemmeennttss

The performance enhancements to theUNIX file system did notrequire any changes to the semantics or data
struc- tures visible toapplication programs.However, sev eral changes had been generally desired for some time
but had not been introduced because they would require users to dump and restoreall their file systems. Since the
new file system already required all existing file systems to be dumped and restored,these functionalenhance-
ments were introduced at this time.

55..11.. LLoonngg ffiillee nnaammeess

File names can now be of nearly arbitrary length. Only programs that read directories are affected by this
change. To promote portability to UNIX systems that are notrunning the new file system, a set of directory access
routines have been introduced to provide a consistent interface to direc- tories on both old and new systems.

Directories are allocated in 512 byteunits called chunks. This size is chosen so that each allocation canbe
transferred todisk in a single operation.Chunks are bro- ken up into variable length records termeddirectory
entries. Adirectory entry contains the information neces- sary to map the name of a file to its associated inode.No
directory entry is allowed tospan multiple chunks.The first three fields of a directory entry are fixed length and
contain: an inode number, the size of the entry, and the length of the file name contained in the entry. The remain-
der ofan entry is variable length and contains a null ter- minated file name, padded to a 4 byte boundary. The maxi-
mum length of a file name in a directory is currently 255 char- acters.

Av ailable space in a directory isrecorded by having one or more entries accumulate the free space in their entry
size fields. This results indirectory entries that arelarger than required to hold the entryname plus fixed
length fields. Space allocated to a directory should always be completely accounted for by totaling up the sizes of
its entries.When an entry is deletedfrom a directory, its space is returned to a previous entry in the same directo-
ry chunk by increasing the size of the previous entry by the size of thedeleted entry. If the first entry of a direc-
tory chunk is free, then the entry’s inode number is set to zero to indicate that it is unallocated.

55..22.. FFiill ee lloocckkiinngg

The old file system had no provision for locking files. Processes that needed to synchronize the updates ofa file
had to use a separate ‘‘lock’’ fi le. A process would try to

SMM:05-20 AFast File System for UNIX

create a ‘‘lock’ ’ fi le. If the creation succeeded, then the processcould proceed with its update; ifthe creation
failed, then the process would wait and try again. Thismechanism hadthree drawbacks. Processesconsumed
CPU time by looping over attempts to create locks. Locks left lying around because of system crashes had to be
manually removed (normally in a systemstartup command script).Finally, processes running as system adminis-
trator are always permit- ted to create files, so were forced to use a different mech- anism.While it is possible to
get around all these prob- lems, the solutions are not straight forward, so a mechanism for locking files has been
added.

The most general schemesallow multiple processes to concurrently update a file.Several of these techniques
are discussed in [Peterson83].A simpler technique is to seri- alize access to a file withlocks. To attain reason-
able efficiency, certain applications require the ability to lock pieces of a file. Locking down to the byte level has
been implementedin theOnyx file system by [Bass81].However, for the standard system applications, a mecha-
nism that locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory locks.The primary
differ- ence betweenadvisory locks and hard locks is the extent of enforcement.A hard lock is always enforced
when a program triesto access a file;an advisory lock is only applied when it is requested by a program.Thus
advisory locks are onlyeffective when allprograms accessing a file use the locking scheme.With hard locks
there must be some override policy implemented inthe kernel. With advisory locks the policy is left to the user
programs. In the UNIX system, programs with system administrator privilege are allowed override any protec-
tion scheme. Because many of the pro- grams that need to uselocks must also run as the system administrator,
we chose to implement advisorylocks rather than createan additional protection scheme that was incon- sistent
with the UNIX philosophy or could not be used bysystem administration programs.

The file locking facilities allow cooperating programs to apply advisory _s_h_a_r_e_d or _e_x_c_l_u_s_i_v_e locks on
files. Onlyone processmay have an exclusive lock on a file while mul- tiple shared locks may be present.Both
shared and exclu- sive locks cannot be present on a file at the same time. If any lock is requested when another
process holdsan exclu- sive lock, or anexclusive lock is requested when another process holds any lock, the lock
request will block until the lock can be obtained.Because shared and exclusive locks are advisory only, even if
a process has obtained alock on a file, another process may access the file.

A Fast File System for UNIX SMM:05-21

Locks areapplied or removed only on open files. This means that locks can be manipulated without needing to
close andreopen a file. This isuseful, for example, when a process wishes to apply a shared lock, read some in-
formation anddetermine whetheran update is required, then apply an exclusive lock and update the file.

A request for a lock will cause a process toblock if the lock can not be immediately obtained.In certain in-
stances this is unsatisfactory. For example, a process that wants only to check if a lock is present would require a
separate mechanism to find out thisinformation. Conse-quently, a process may specify thatits locking request
should return with an error if a lock can not be immediately obtained.Being able to conditionallyrequest a lock
is useful to ‘‘daemon’’ processes that wish to service a spool- ingarea. If the firstinstance of the daemon locks
the directory where spooling takes place, later daemon processes caneasily checkto see if an active daemon exists.
Since locks exist only while thelocking processes exist, lock files can never be left active after the processes exit
or if the system crashes.

Almost no deadlock detection isattempted. Theonly deadlockdetection done bythe system is that the file to
which a lock is applied must not already have a lock of the same type (i.e. the second of two successive calls to ap-
ply a lock of the same type will fail).

55..33.. SSyymmbboolliicc lliinnkkss

The traditional UNIX file system allows multiple direc- toryentries inthe same file system to reference a single
file. Eachdirectory entry ‘‘links’ ’ a file’s name to an inode and its contents. Thelink concept is fundamental;
inodes do not reside in directories,but exist separatelyand are referenced by links. When all the links to an inode
are removed, the inode is deallocated. This style of refer- encing an inode doesnot allow references across physi-
cal file systems, nor does it support inter-machine linkage.To avoid these limitations _s_y_m_b_o_l_i_c _l_i_n_k_s similar
to the scheme used by Multics [Feiertag71] have been added.

A symbolic link is implemented as a file that contains apathname. Whenthe system encountersa symbolic
link while interpreting a component of a pathname,the contents of the symboliclink is prepended to the rest of
the path- name, and this name is interpreted toyield the resultingpathname. InUNIX, pathnames are specified
relative to the root of the file system hierarchy, or relative to a process’s current working directory. Path-
names specified relative to the root are called absolutepathnames. Path- namesspecified relative to the current
working directory are termed relative pathnames. Ifa symbolic link contains

SMM:05-22 AFast File System for UNIX

an absolutepathname, the absolute pathname is used, other- wise the contents of the symbolic link is evaluated rela-
tive to the location of the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a pathname that they are using.
However certain systemutilities must be able to detect and manipu- late symbolic links. Three new system calls
provide theability to detect, read, andwrite symbolic links; seven system utilities required changes to use these
calls.

In future Berkeley software distributions it may bepossible to reference file systems located on remote
machines using pathnames. When this occurs, it will be pos- sible to create symbolic links that span machines.

55..44.. RReennaammee

Programs thatcreate a new version of an existing file typically create the new version asa temporary file and
then rename thetemporary file with the name of the target file. In the old UNIX file system renamingrequired
three calls to the system. Ifa program were interrupted or the system crashed between these calls, the target file
could be left with only its temporary name.To eliminate this possi- bility the _r_e_n_a_m_e system call has been
added. Therename call does the rename operation in a fashion that guarantees the existence of the target name.

Rename works both on data files and directories. When renamingdirectories, the system must do special vali-
dation checks to insure that the directory treestructure is not corrupted bythe creation of loops or inaccessible di-
recto- ries. Such corruption would occurif a parent directory were moved into one of its descendants. The
validation check requires tracing the descendents of the target direc- tory toinsure that it does not include the direc-
tory being moved.

55..55.. QQuuoottaass

The UNIX system has traditionallyattempted to share all available resources to thegreatest extent possible.
Thus any single user can allocate all the available space in the file system.In certain environments this is unaccept-
able. Consequently, a quota mechanism hasbeen added for restricting theamount of file system resources that a
user can obtain. The quota mechanism setslimits on both the number of inodesand the number of disk blocks
that a user may allocate.A separate quota can be set for each useron eachfile system. Resources aregiven both
a hard and a soft limit.When a program exceeds a soft limit, awarning is printed onthe users terminal; the of-
fending program is not terminated unless it exceeds its hard limit.The idea

A Fast File System for UNIX SMM:05-23

is that users should staybelow their soft limit between login sessions, but they may use more resourceswhile
they are actively working. To encourage this behavior, users are warned when logging in if they are over any of
their softlimits. If users fails to correct the problem for too many login sessions, they are eventually reprimanded
by having their soft limit enforced as their hard limit.

AAcckknnoo wwlleeddggeemmeennttss

We thank Robert Elz for his ongoing interest in the new file system, and for adding disk quotas ina rational and
efficient manner. We also acknowledge Dennis Ritchie for his suggestions on the appropriate modifications to the
user interface. We appreciate Michael Powell’s explanations on how the DEMOS file system worked; many of his
ideas were used in this implementation. Specialcommendation goes to Peter Kessler and Robert Henry for acting
like real usersduring the early debugging stage when file systems were less stable than they should have been. The
criticisms and sug- gestionsby the reviews contributed significantly to the coherence of the paper. Finally we
thank our sponsors, the National Science Foundation under grant MCS80-05144, and the Defense Advance Re-
search Projects Agency (DoD) under ARPA Order No.4031 monitored by Naval Electronic System Command
under Contract No. N00039-82-C-0235.

RReeffeerreenncceess

[Almes78] Almes,G., and Robertson, G. "An Exten-
sible File System for Hydra" Proceedings
of the Third International Conference on
Software Engineering, IEEE, May 1978.

[Bass81] Bass,J. "ImplementationDescription
for File Locking", Onyx Systems Inc, 73
E. Trimble Rd, SanJose, CA 95131 Jan
1981.

[Feiertag71] Feiertag,R. J. and Organick, E. I.,
"The MulticsInput-Output System", Pro-
ceedings of the Third Symposium on Oper-
ating Systems Principles, ACM, Oct 1971.
pp 35-41

[Ferrin82a] Ferrin,T.E., "Performanceand Robust-
ness Improvements in Version 7 UNIX",
Computer GraphicsLaboratory Technical
Report 2, School of Pharmacy, University

SMM:05-24 AFast File System for UNIX

of California, San Francisco, January
1982. Presentedat the 1982 Winter
Usenix Conference, SantaMonica, Cali-
fornia.

[Ferrin82b] Ferrin,T.E., "Performance Issusesof
VMUNIX Revisited", ;login: (The Usenix
Association Newsletter), Vol 7, #5,
November 1982. pp 3-6

[Kridle83] Kridle, R., and McKusick, M., "Perfor-
mance Effects of Disk Subsystem Choices
for VAX SystemsRunning 4.2BSD UNIX",
Computer Systems Research Group, Dept of
EECS, Berkeley, CA 94720, Technical
Report #8.

[Kow alski78] Kow alski, T. "FSCK -The UNIX System
Check Program", Bell Laboratory, Murray
Hill, NJ 07974. March 1978

[Knuth75] Kunth, D. "The Art of Computer Program-
ming", Volume 3 - Sorting and Searching,
Addison-Wesley Publishing Company Inc,
Reading, Mass, 1975. pp 506-549

[Maruyama76] Maruyama,K., and Smith, S. "Optimal
reorganization of Distributed Space Disk
Files", CACM, 19, 11. Nov 1976. pp
634-642

[Nevalainen77] Nevalainen, O.,Vesterinen, M. "Deter-
mining Blocking Factors for Sequential
Files by Heuristic Methods",The Com-
puter Journal, 20, 3. Aug 1977. pp
245-247

[Pechura83] Pechura,M., and Schoeffler, J. "Esti-

mating File Access Time of Floppy
Disks", CACM, 26, 10. Oct 1983. pp
754-763

[Peterson83] Peterson,G. "Concurrent Reading While
Writing", ACM Transactions on Program-
ming Languages and Systems, ACM, 5, 1.
Jan 1983. pp 46-55

[Powell79] Powell, M. "The DEMOS FileSystem",
Proceedings of theSixth Symposium on
Operating Systems Principles,ACM, Nov
1977. pp 33-42

[Ritchie74] Ritchie,D. M. and Thompson, K., "The
UNIX Time-Sharing System",CACM 17, 7.

A Fast File System for UNIX SMM:05-25

July 1974. pp 365-375

[Smith81a] Smith,A. "Input/Output Optimization
and DiskArchitectures: A Survey", Per-
formance and Evaluation 1. Jan 1981. pp
104-117

[Smith81b] Smith,A. "Bibliography on File and I/O
System Optimization and Related Topics",
Operating Systems Review, 15, 4.Oct
1981. pp 39-54

[Symbolics81] "SymbolicsFile System", Symbolics Inc,
9600 DeSoto Ave, Chatsworth, CA 91311
Aug 1981.

[Thompson78] Thompson,K. "UNIX Implementation",
Bell System Technical Journal,57, 6,
part 2. pp 1931-1946 July-August 1978.

[Thompson80] Thompson,M. "Spice File System",
Carnegie-Mellon University, Department
of Computer Science, Pittsburg, PA 15213
#CMU-CS-80, Sept 1980.

[Trivedi80] Trivedi, K. "Optimal Selection of CPU
Speed, Device Capabilities, and File
Assignments", Journal of the ACM, 27, 3.
July 1980. pp 457-473

[White80] White,R. M. "Disk Storage Technology",
Scientific American, 243(2),August
1980.

